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José Manoel Balthazar

UNESP, Bauru, SP, Brazil; email: jmbaltha@gmail.com

Reyolando Manoel Lopes Rebello da Fonseca Brasil

UFABC, Santo Andre, SP, Brazil; email: reyolando.brasil@ufabc.edu.br

This paper presents position and vibration control of a flexible robot composed of two rigid
and one flexible links. Position is controlled by the current applied to the DC motor armature.
To control vibrations of the flexible structure, Shape Memory Alloys (SMA) are used. Due
to phase transformations, the SMA can change its stiffness through temperature variation,
considering and taking advantage of this characteristic the vibration control is done. Control
is achieved via the State Dependent Ricatti Equations (SDRE) technique, which uses sub-
optimal control and system local stability search. The simulation results show the feasibility
of the proposed control for the considered system.
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1. Introduction

In the last decades, several researches on robotic manipulators with flexible links have come to
attention due to their many advantages over rigid manipulators (Kalyoncu, 2008).
Shawky et al. (2013) remarked that flexible manipulator systems offer several advantages

in contrast to the traditional rigid manipulator. The advantages include faster response, lower
energy consumption, relatively smaller actuators and less overall mass and, in general, smaller
final cost. Due to its flexible nature, control of these flexible systems takes into account both
rigid body and elastic degrees of freedom. It is important to recognize the flexible nature of
the manipulator and construct a mathematical model for the system that accounts for the
interactions between the actuators and payload.
According to Banks et al. (1996) and Gabbert and Schulz (1996), it is necessary to improve

robotic manipulators including the use of smart materials to assist control by changing the
structural behavior.
There are several studies suggesting solutions to the problem of handlers with flexible ele-

ments such as (Sawada et al., 2004), which have been exploited for the purposes of efficiency
and flexibility of a handler in microgravity environment. In Inifene (2007), the dynamics of a
flexible link and a comparative study of some implemented control is shown. (Heidari et al.,
2013) proposes a nonlinear finite element modeling of flexibility of handlers. In Grandinetti et
al. (2012), a three-degree-of-freedom cylindrical manipulator system with a flexible link on its
tip is studied and experimentally implemented, and the active vibration control is analyzed. In
Halim et al. (2014), the use of a decentralized vibration control scheme for suppressing vibration
of a multi-link flexible robotic manipulator using embedded smart piezoelectric transducers is
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investigated. In Pereira et al. (2012), an adaptive control applied to single link-flexible manipu-
lators, utilizing a feedback controller of the joint angle to guarantee trajectory tracking of the
joint angle with an adaptive input shaper updated by algebraic non-asymptotic identification is
proposed.
Bottega et al. (2009) proposed a tracking control model for a flexible link robotic manipulator

using simultaneously motor torques and piezoelectric actuators. Molter et al. (2010) used SDRE
control technique design for flexible manipulators using piezoelectric actuators. In Shawky et
al. (2013), the tip position of a one-link flexible manipulator was modeled and controlled. The
control strategy was based on the SDRE control design method in the context of application to
robotics. The experimental results revealed that the nonlinear SDRE controller was near optimal
and robust, and its performance compared favorably to the conventional PD controller strategy.
This work proposes the control of a robotic manipulator for aerospace applications. It is

composed of two rigid links modeled as proposed by Korayem et al. (2011), and one flexible
link modeled as proposed by Janzen et al. (2014). The gravity effects are not considered, similar
to the proposal presented by Sawada et al. (2004). In order to reduce vibrations of the flexible
manipulator, it is proposed to use SMAs. Shape Memory Alloys (SMAs) are a group of metallic
materials with the ability to return to a previously defined shape or size, after deformation, by
applying a specific temperature. This effect occurs due to the shift in the materials crystalline
structure between two different phases, called martensite and austenite (Piccirillo et al., 2008,
2009). When SMAs are heated, they present changes in crystal structure. These changes generate
large forces that can be used in actuator systems (Ge et al., 2013). In this way, SMAs can be
used in many application areas, like robotics, since they allow for a lighter weight manipulator
and longer links, which are important for aerospace applications.
The proposed feedback control system is designed to take the system into a desired coordi-

nate. The feedback control is obtained using SDRE. The SDRE control choice is because the
control computer algorithm is simple and highly effective for nonlinear feedback control. It has
been successfully used in robotic manipulators (Innocenti et al., 2000; Xin et al., 2001; Korayem
et al., 2010; Nekoo, 2013; Korayem and Nekoo, 2014, 2015a), and in robotic manipulators with a
flexible joint or/and with flexible link (Korayem et al. 2011; Fenili and Balthazar, 2011; Shawky
et al., 2013; Lima et al., 2014; Korayem and Nekoo, 2015b).
The paper is organized is as follows. Section 2 provides the dynamic model for a two rigid

and a flexible link manipulator. Section 3 presents the SDRE control project considering both
control of just positioning, without vibration control of the flexible link, as in the case of vibration
control of the flexible link by temperature variation (SMAs). Concluding remarks are given in
Section 4.

2. Mathematical model

The adopted manipulator model consists of two rigid links and the third flexible one. The DC
motors and joints of the robotic manipulator are presented in Fig. 1, and the transmission motor
torque to the manipulator is given by Eq. (2.6),
The governing equations of motions are obtained through Lagrangian formalism. To derive

the equations of motion of the manipulator, one needs the kinetic energy ℑ and the potential
energy Γ in the Lagrangian function L

L = ℑ− Γ (2.1)

Next, one must apply the equations of Euler-Lagrange (Lima et al., 2014)

d

dt

(∂L

∂θ̇i

)

−
∂L

∂θi
= τi (2.2)
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Fig. 1. Schematic of the manipulator model, where θ1,2,3 are the joint angles of each link, θ4,5 are the
corresponding motor angles for the link, bs is the damping constant, k is the spring constant, and the

variable z is the displacement of the beam end

The right hand side of Eq. (2.2) are non-conservative forces. Thus, we obtain Eq. (2.3), the
equations of motion of the link (Korayem et al., 2011; Lima et al., 2014)

M(θ)θ̈ = −C(θ, θ̇)− F(θ̇) + τ (2.3)

whereM(θ) is the inertia matrix, θ̈ represents the acceleration of the i-th link, C(θ, θ̇) are the
centrifugal and Coriolis forces, F(θ̇) describes friction between the joint and the link and τ is
the torque effect on the rotors.
The system matrices C(θ, θ̇) and F(θ̇) are presented by

C(θ, θ̇) =







v11 v12 v13
v21 v22 v23
v31 v32 v33













θ̇1
θ̇2
θ̇M3






F(θ̇) =







kaθ̇1
kaθ̇2
bv θ̇M3






(2.4)

where v3×3 are the variables of centrifugal/coriolis forces.
The equations that define the dynamics of the DC motor, are obtained by Eq. (2.1) and Eq.

(2.2), and represented by

θ̈Mi =
bv θ̇Mi − ktii + τs

J
i̇i =
−RM ii − kbθ̇Mi + Vi

Lm
(2.5)

where θ̈Mi is the acceleration and θ̇Mi the velocity of DC motor, ii is the current, Vi is the
voltage applied in the DC motor armature, RM , kb and Lm are the resistance of the armature,
the electromotive force constant and the inductance of the armature of the motor, respectively.
For the coupling of the equations, we replace τi = τsi in Eqs. (2.3), (2.4) and (2.5)1, thus

considering the characteristic of the proposed model flexible joints, according to (Lima et al.,
2014)

τ s =







bs(θ̇M1 − θ̇1) + k(θM1 − θ1)

bs(θ̇M2 − θ̇2) + k(θM2 − θ2)
ki3






(2.6)

The dynamics of the system with a flexible beam coupled to the shaft of the DC motor is
given by (Janzen et al., 2014)

i̇ =
−RM i− kbθ̇ + V

LM
θ̇v =

−bv θ̇ + kti−C(θ, θ̇) + EIφ
′′

0z

Jv

z̈ = −µż − w2z − αv θ̈ + θ̇
2z

(2.7)
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where E is Young’s modulus and I is the moment of inertia of the cross section of the beam, z is
the displacement for the first mode of vibration of the beam and φ′′0 is the constant of the beam
vibration modes for the first mode, obtained by applying the assumed mode method (Fenili and
Balthazar, 2011). Thus, the proposed system is represented by Eq. (2.3) coupled with Eq. (2.7),
in the state space of the variables, represented by

ẋ1 = x2

ẋ2 = p11(−kx1 + kx3 + bsx4) + p12(−kx6 + kx8 + bsx9)− p13(EIφ
′′

0x14)

+ ϕ11x2 + ϕ12x6 + ϕ13x11

ẋ3 = x4

ẋ4 =
k

Jm
x1 +

bs

Jm
x2 −

k

Jm
x3 −

bs + bv
Jm

x4 +
kt

Jm
x5

ẋ5 = −
kb

Lm
x4 −

Rm

Lm
x5

ẋ6 = x7

ẋ7 = p21(−kx1 + kx3 + bsx4) + p22(−kx6 + kx8 + bsx9)− p23(EIφ
′′

0x14)

+ ϕ21x2 + ϕ22x6 + ϕ23x11

ẋ8 = x9

ẋ9 =
k

Jm
x6 +

bs

Jm
x7 −

k

Jm
x8 −

bs + bv
Jm

x9 +
kt

Jm
x10

ẋ10 = −
kb

Lm
x9 −

Rm

Lm
x10

ẋ11 = x12

ẋ12 = p31(−kx1 + kx3 + bsx4) + p32(−kx6 + kx8 + bsx9)− p33(EIφ
′′

0x14)

+ ϕ31x2 + ϕ32x6 + ϕ33x11

ẋ13 = −
kb

Lm
x14 −

Rm

Lm
x15

ẋ14 = x15

ẋ15 = −αvϕ31x12 − αv + (ω
2 + αv(p33(EIφ

′′

0 + x
2
12)))x14 − µx15

(2.8)

where x1 = θ1, x2 = θ̇1, x3 = θM1, x4 = θ̇M1, x5 = i1, x6 = θ2, x7 = θ̇2, x8 = θM2 , x9 = θ̇M2,
x10 = i2, x11 = θM3, x12 = θ̇M3, x13 = i3, x14 = z, x15 = ż and ϕnm are the nonlinear elements.
The index n indicates the equation of the system θ̈n it belongs to, and m is the corresponding

coefficient of velocity θ̇m. We can see the elements of ϕnm below

ϕ11 = p11(−ka − v11 − bs)− p12v21 − p13v31

ϕ12 = −p11v12 + p12(−v22 − ka − bs)− p13v32

ϕ13 = −p11v13 − p12v23 + p13(−v33 − bv)

ϕ21 = p21(−ka − v11 − bs)− p22v21 − p23v31

ϕ22 = −p21v12 + p12(−v22 − ka − bs)− p23v32

ϕ23 = −p21v13 − p12v23 + p23(−v33 − bv)

ϕ31 = p31(−ka − v11 − bs)− p32v21 − p33v31

ϕ32 = −p31v12 + p32(−v22 − ka − bs)− p33v32

ϕ33 = −p31v13 − p32v23 + p33(−v33 − bv)

(2.9)

and

p3×3 =M(θ)
−1 (2.10)
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3. Proposed control

Consider system (2.8) in the form

ẋ = A(x)x+Bu (3.1)

where x ∈ ℜn is the state vector, A(x) ∈ ℜn×n is the state-dependent matrix, B ∈ ℜn×m is the
control matrix and u is a feedback control vector.
The proposed control u can be determined using SDRE control (Balthazar et al., 2014). The

methodology used in SDRE control makes the synthesis of LQR control gains varying in time
(Mracek and Cloutier, 1998). The quadratic cost function for the regulator problem is given by

J =
1

2

∞
∫

t0

[eTQe+ uTRu] dt (3.2)

where Q ∈ ℜn×n and R ∈ ℜm×m are positive definite matrices, and

e =
[

x1 − x
∗

1 0 0 0 0 x2 − x
∗

2 0 0 0 0 x3 − x
∗

3 0 0 0 0
]T

(3.3)

where x are the system state variables, and x∗ is the desired state.
Assuming full state feedback, the control law is given by

u = −R−1BTPe (3.4)

The State-Dependent-Riccati equation to obtain P is given by

P(x)A(x) +A(x)TP(x)−P(x)BR−1BTP(x) +Q = 0 (3.5)

In numerical simulations, we consider two situations. First, we consider control of the handler
via DC motors at the joints without control of vibrations of the flexible beam. Next, we consider
control of the vibration of the flexible beam. It is assumed throughout this paper that the
parameters considered are presented in Table 1.

Table 1. Parameters for simulation

L1 = 0.5m L2 = 0.5m L3 = 1.2m

M1 = 1kg M2 = 1kg M3 = 1.318 · 10
−4 kg

kt1 = 0.08Nm/A kt2 = 0.08Nm/A kt3 = 0.058 Nm/A

kb1 = 0.008V/rpm kb2 = 0.008V/rpm kb3 = 0.008V/rpm

bv1 = 0.2Nms/rad bv2 = 0.2Nms/rad bv3 = 4.62Nms/rad

Rm1 = 1.7Ω Rm2 = 1.7Ω Rm3 = 1.914Ω

Lm1 = 0.003H Lm2 = 0.003H Lm3 = 3.4 · 10
−3H

E = 0.7 · 1011 N/m2 Im = 6.54 · 10
−5 kg/m2 Ie = 6.54 · 10

−7 kg/m2

I = 1.56 · 10−13m4 µ = 0.1 φ′′0 = 4.898m

αv = 0.821 w = 11.3097 rad/s

The initial values for x are given by: x1(0) = π, x2(0) = 0, x3(0) = π, x4(0) = 0, x5(0) = 0,
x6(0) = 0.6981, x7(0) = 0, x8(0) = 0.6981, x9(0) = 0, x10(0) = 0, x11(0) = 0.5236, x12(0) = 0,
x13(0) = 0, x14(0) = 0 and x15(0) = 0.
The desired state is: x∗1 = 2.0944, x

∗

2 = 0, x
∗

3 = x3, x
∗

4 = x4, x
∗

5 = x5, x
∗

6 = −0.6981, x
∗

7 = 0,
x∗8 = x8, x

∗

9 = x9, x
∗

10 = x10, x
∗

11 = −0.5236, x
∗

12 = 0, x
∗

13 = x13, x13(0) = 0, x
∗

14 = 0 and
x∗15 = 0.
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3.1. Position control for DC motor (control I)

Consider the case in which the control u is applied only to position control of θ1, θ2 and θM3,
and flexible link vibrations are not controlled directly. Thus, we define Q, R = R1 and consider
u = [u1 u2 u3]

T, A = [A1 A2], B = B1, where the control signal (u1, u2 and u3) represents
the voltage applied to the motor terminals (matrices Q, R1, A1, A2 and B1 in Appendix). In
Figs. 2a,b,c, we can observe the position error of the manipulator (θ1, θ2 and θM3), considering
only position control of the link by the motor current. In Fig. 2d, we can observe vibrations at
the tip of the flexible link (z).

Fig. 2. (a) Positioning θ1, (b) positioning θ2, (c) positioning motor θM3, (d) displacement of the beam z

Although the system controlled by the motors can position the links at the desired points,
we observe oscillations in the positioning (Fig. 2a,b,c) caused by vibrations of the flexible link
(Fig. 2d).

3.2. Position control for DC motor and beam deflection control (control II)

In the adopted second strategy we control θ1, θ2 and θM3 and control the flexible link
vibrations using SMAs fixed to the link. SMAs capacity to change their physical properties with
temperature variation allows for their use as means to vibration suppression of the flexible link.

Falk (1980, 1993) proposed the SMA mathematical model used in this paper. It is based on
the Devonshire theory that considers free energy in a polynomial form. This model does not
consider internal variables and potential dissipation to describe the pseudo-elasticity and the
shape memory effect. The Falk model considers only the temperature T and the deformation (ε)
(Janzen et al., 2014).

The SMA polynomial model was chosen due to its capacity to represent qualitatively the
pseudo-elasticity and shape memory effects of the SMA structure. The Helmholtz free energy ψ
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was chosen so there are minimum and maximum points that represent the stability and instability
of the SMA phases. The potential of free energy can be described by

ρψ(ε, T ) =
1

2
q(T − TM )ε

2 −
1

4
bε4 +

b2ε6

24q(TA − TM )
(3.6)

The variables TA and TM are temperatures in which the austenitic and martensitic phases
are stable, q and b are positive constants. A constitutive equation can be written as (Savi et al.,
2002)

σ = q(T − TM )ε−
1

4
bε3 +

b2ε5

4q(TA − TM )
(3.7)

where b = 1.868·107MPa, q = 523.29MPa/K, TM = 364.3K and TM = 288K for (Cu-Zn-Al-Ni).

The SMA element can be coupled to the beam-like structure as a stiffness component which
can be described by

k(x, T ) = q(T − TM )x− bx
3 + ex5 (3.8)

where

q =
qAr

L
b =

bAr

L3
e =

eAr

L5

Considering the case in which the objective is to position the beam-like link and reducing its
oscillations, we defineQ,R = R2 and consider uf = [u1 u2 u3 u4]

T, A = [A1 A3] and B = B2
(matrices Q, R2, A1, A3 and B2 in Appendix). And considering: q = 1.56987, b = 114367.348
and e = 7232491.36 (Janzen et al., 2014).

The control signal (u1, u2 and u3) represents the voltage applied to the motor terminals, and
(u4) represents the temperature variation of the SMA given by

u4 = ∆T = T − TM (3.9)

In Figs. 3a,b and 3c, we can observe the manipulator position error (θ1, θ2 and θM3) consi-
dering the positioning control of links through the motors, and the vibration control of flexible
link through the use of SMA in Fig. 3d (z).

As we can see in Fig. 3, the addition of SMA reduces vibrations of the flexible link, therefore
reducing oscillations (θM3). Thus, we avoid inversion of the torques of the motors, which caused
the oscillations seen in Fig. 2.

In Fig 4a, we can observe the temperature variation of the SMA to control the vibration
of the flexible link (∆T ), and in Fig. 4b we present the comparative results between the two
control strategies proposed.

First, the structure is fully austenite, and it can be seen from Fig. 4 that no phase transfor-
mation occurs in the alloy, namely, the SMA remains in the austenite phase (TA  364.3K). This
variation of the parameter ∆T acts on the beam rigidity (Eq. (3.8)) and reduces the amplitude
of displacement of the flexible link as can be observed in Fig. 4b.

It is also possible to observe that ∆T remained at a constant value of ∆T = 77K for
t > 0.029 s, due to the need of keeping the SMA in the austenite phase, enables control of the
stiffness according to equation (3.8).

By applying DC control motors and using flexible SMA one observes a smoother response
for all angles θ1, θ2 and θM3 and a smaller amplitude of oscillation z.
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Fig. 3. (a) Positioning θ1, (b) positioning θ2, (c) positioning motor θM3, (d) displacement of the beam z

Fig. 4. (a) Temperature variation in SMA (u4 = T − 288 = ∆T ), (b) displacement of the beam z

4. Conclusion

We can observe in the simulations results that vibration control of the flexible link allows for
a more efficient control than the control provided by the motors only. This demonstrates the
importance of controlling vibrations of the flexible link. By using the polynomial model of
SMA it is possible to estimate the temperature variation in the SMA to attenuate vibrations
of the flexible link. The temperature variation of the SMA causes changes in their physical
characteristics, allowing for its use as a way to reduce vibrations of the flexible beam. The
numerical results show that the proposed control strategy using SMA in vibration control of
the flexible links is a good alternative to constructing lighter handlers with longer links, such as
those applied in aerospace activities.
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Appendix

A1 =































































0 1 0 0 0 0 0 0 0 0
−p11k ϕ11 p11k p11bs 0 −p12k ϕ12 p12k p12bs 0
0 0 0 1 0 0 0 0 0 0
k
Jm

bs
Jm
− k
Jm
− bs+bv
Jm

kt
Jm

0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 − kb
Lm

−Rm
Lm

0 0 0 0 0

−p21k ϕ21 p21k p21bs 0 −p22k ϕ22 p22k p22bs 0
0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 k
Jm

bs
Jm
− k
Jm
− bs+bv
Jm

kt
Jm

0 0 0 0 0 0 0 0 − kb
Lm

−Rm
Lm

0 0 0 0 0 0 0 0 0 0
−p31k ϕ31 p31k p31bs 0 −p32k ϕ32 p32k p32bs 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0































































BT1 =







0 0 0 1
LM

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
LM

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
LM

0 0







Q15×15 = {qij} qij =











0 if i 6= j
1 if i = 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15
100 if i = 1, 6, 11, 14

R1 =







0.1 0 0
0 0.1 0
0 0 0.1






R2 =











0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1











A2 =





























































0 0 0 0 0
0 ϕ13 p13kt −p13EIφ

′′

0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 ϕ23 p23kt −p23EIφ

′′

0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 ϕ33 p33kt −p33EIφ

′′

0 0

0 − kb
LM

−RM
LM

0 0

0 0 0 0 1
0 −αvϕ33 αvp33kt w2 + αvp33EIφ

′′

0 + x
2
12 µ
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B2 =





























































0 0 0 0
0 0 0 0
0 0 0 0
1
LM

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1

LM
0 0

0 0 0 0
0 0 0 0
0 0 1

LM
0

0 0 0 0
0 0 0 −qx14





























































A3 =





























































0 0 0 0 0
0 ϕ13 p13kt −p13EIφ

′′

0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 ϕ23 p23kt −p23EIφ

′′

0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 ϕ33 p33kt −p33EIφ

′′

0 0

0 − kb
LM

−RM
LM

0 0

0 0 0 0 1

0 −αvϕ33 αvp33kt w2 + αvp33EIφ
′′

0 + x
2
12 − x

2
14(b− ex

2
14) µ
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